2,650 research outputs found

    Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory

    Full text link
    The full structuration of light in the transverse plane, including intensity, phase and polarization, holds the promise of unprecedented capabilities for applications in classical optics as well as in quantum optics and information sciences. Harnessing special topologies can lead to enhanced focusing, data multiplexing or advanced sensing and metrology. Here we experimentally demonstrate the storage of such spatio-polarization-patterned beams into an optical memory. A set of vectorial vortex modes is generated via liquid crystal cell with topological charge in the optic axis distribution, and preservation of the phase and polarization singularities is demonstrated after retrieval, at the single-photon level. The realized multiple-degree-of-freedom memory can find applications in classical data processing but also in quantum network scenarios where structured states have been shown to provide promising attributes, such as rotational invariance

    Normal metal tunnel junction-based superconducting quantum interference proximity transistor: the N-SQUIPT

    Full text link
    We report the fabrication and characterization of an alternative design for a superconducting quantum interference proximity transistor (SQUIPT) based on a normal metal (N) probe. The absence of direct Josephson coupling between the proximized metal nanowire and the N probe allows us to observe the full modulation of the wire density of states around zero voltage and current \textit{via} the application of an external magnetic field. This results into a drastic suppression of power dissipation which can be as low as a few 1017\sim 10^{-17} W. In this context the interferometer allows an improvement of up to four orders of magnitude with respect to earlier SQUIPT designs, and makes it ideal for extra-low power cryogenic applications. In addition, the N-SQUIPT has been recently predicted to be the enabling candidate for the implementation of coherent caloritronic devices based on proximity effect.Comment: 5 pages, 4 color figure

    Kaon decay interferometry as meson dynamics probes

    Full text link
    We discuss the time dependent interferences between KLK_L and KSK_S in the decays in 3π3\pi and ππγ\pi\pi\gamma, to be studied at interferometry machines such as the ϕ\phi-factory and LEAR. We emphasize the possibilities and the advantages of using interferences, in comparison with width measurements, to obtain information both on CPCP conserving and CPCP violating amplitudes. Comparison with present data and suggestions for future experiments are made.Comment: 15 pages, in RevTex, Report INFNNA-IV-93-31, UTS-DFT-93-2

    The Evolution of Neural Network-Based Chart Patterns: A Preliminary Study

    Full text link
    A neural network-based chart pattern represents adaptive parametric features, including non-linear transformations, and a template that can be applied in the feature space. The search of neural network-based chart patterns has been unexplored despite its potential expressiveness. In this paper, we formulate a general chart pattern search problem to enable cross-representational quantitative comparison of various search schemes. We suggest a HyperNEAT framework applying state-of-the-art deep neural network techniques to find attractive neural network-based chart patterns; These techniques enable a fast evaluation and search of robust patterns, as well as bringing a performance gain. The proposed framework successfully found attractive patterns on the Korean stock market. We compared newly found patterns with those found by different search schemes, showing the proposed approach has potential.Comment: 8 pages, In proceedings of Genetic and Evolutionary Computation Conference (GECCO 2017), Berlin, German

    Strong rescattering in K-> 3pi decays and low-energy meson dynamics

    Full text link
    We present a consistent analysis of final state interactions in K3π{K\rightarrow 3\pi} decays in the framework of Chiral Perturbation Theory. The result is that the kinematical dependence of the rescattering phases cannot be neglected. The possibility of extracting the phase shifts from future KSKLK_S-K_L interference experiments is also analyzed.Comment: 14 pages in RevTex, 3 figures in postscrip

    Multi-contrast imaging and digital refocusing on a mobile microscope with a domed LED array

    Get PDF
    We demonstrate the design and application of an add-on device for improving the diagnostic and research capabilities of CellScope--a low-cost, smartphone-based point-of-care microscope. We replace the single LED illumination of the original CellScope with a programmable domed LED array. By leveraging recent advances in computational illumination, this new device enables simultaneous multi-contrast imaging with brightfield, darkfield, and phase imaging modes. Further, we scan through illumination angles to capture lightfield datasets, which can be used to recover 3D intensity and phase images without any hardware changes. This digital refocusing procedure can be used for either 3D imaging or software-only focus correction, reducing the need for precise mechanical focusing during field experiments. All acquisition and processing is performed on the mobile phone and controlled through a smartphone application, making the computational microscope compact and portable. Using multiple samples and different objective magnifications, we demonstrate that the performance of our device is comparable to that of a commercial microscope. This unique device platform extends the field imaging capabilities of CellScope, opening up new clinical and research possibilities

    Is contrast-enhanced US alternative to spiral CT in the assessment of treatment outcome of radiofrequency ablation in hepatocellular carcinoma?

    Get PDF
    Purpose: The present study was conducted to assess the efficacy of contrast-enhanced ultrasound with low mechanical index in evaluating the response of percutaneous radiofrequency ablation treatment of hepatocellular carcinoma by comparing it with 4-row spiral computed tomography. Materials and Methods: 100 consecutive patients (65 men and 35 women; age range: 62 – 76 years) with solitary hepatocellular carcinomas (mean lesion diameter: 3.7cm± 1.1cm SD) underwent internally cooled radiofrequency ablation. Therapeutic response was evaluated at one month after the treatment with triple-phasic contrast-enhanced spiral CT and low-mechanical index contrast-enhanced ultrasound following bolus injection of 2.4 ml of Sonovue (Bracco, Milan). 60 out of 100 patients were followed up for another 3 months. Contrast-enhanced sonographic studies were reviewed by two blinded radiologists in consensus. Sensitivity, specificity, NPV and PPV of contrast-enhanced ultrasound examination were determined. Results: After treatment, contrast-enhanced ultrasound identified persistent signal enhancement in 24 patients (24%), whereas no intratumoral enhancement was detected in the remaining 76 patients (76%). Using CT imaging as gold standard, the sensitivity, specificity, NPV, and PPV of contrast enhanced ultrasound were 92.3% (95% CI = 75.9 – 97.9%), 100% (95% CI = 95.2 – 100%), 97.4% (95% CI = 91.1 – 99.3%), and 100% (95% CI = 86.2 – 100%). Conclusion: Contrast-enhanced ultrasound with low mechanical index using Sonovue is a feasible tool in evaluating the response of hepatocellular carcinoma to radiofrequency ablation. Accuracy is comparable to 4-row spiral CT

    Photonic polarization gears for ultra-sensitive angular measurements

    Get PDF
    Quantum metrology bears a great promise in enhancing measurement precision, but is unlikely to become practical in the near future. Its concepts can nevertheless inspire classical or hybrid methods of immediate value. Here, we demonstrate NOON-like photonic states of m quanta of angular momentum up to m=100, in a setup that acts as a "photonic gear", converting, for each photon, a mechanical rotation of an angle {\theta} into an amplified rotation of the optical polarization by m{\theta}, corresponding to a "super-resolving" Malus' law. We show that this effect leads to single-photon angular measurements with the same precision of polarization-only quantum strategies with m photons, but robust to photon losses. Moreover, we combine the gear effect with the quantum enhancement due to entanglement, thus exploiting the advantages of both approaches. The high "gear ratio" m boosts the current state-of-the-art of optical non-contact angular measurements by almost two orders of magnitude.Comment: 10 pages, 4 figures, + supplementary information (10 pages, 3 figures

    Stimulated single-fiber electromyography (sSFEMG) in Lambert-Eaton syndrome

    Get PDF
    Objective: To report the clinical features and the neurophysiological approach of a patient with Lambert-Eaton myasthenic syndrome (LEMS), highlighting the diagnostic role of the stimulated single fiber electromyography (sSFEMG). Case report: A 60-year-old woman presenting with the LEMS triad (proximal and axial weakness, autonomic dysfunction and areflexia) was evaluated by neurophysiological tests (electroneuromyography, repetitive stimulation test (TSR), voluntary and stimulated SFEMG). We reported: 1) increase of compound muscle action potential (CMAP) amplitude (>60%) following brief isometric exercise compared to the rest (baseline); 2) decremental/incremental response of CMAP amplitude at low- (3 Hz) and high-frequency (30 Hz) repetitive stimulation test (RST), respectively; 3) increased neuromuscular jitter and blocking at voluntary single-fiber electromyography (vSFEMG); 4) stimulation rate-dependent reduction of the neuromuscular jitter and blocking at sSFEMG. Diagnosis was confirmed by serological demonstration of circulating voltage gated calcium channels (VGCC) antibodies. Significance: The present case highlights the role of the sSFEMG in the diagnosis of LEMS, underling the stimulation rate-dependency of both neuromuscular jitter and blocks
    corecore